Data Coding Using Sparse Mixture of Experts Regression
Patent 16002/TUB

This invention offers a novel universally applicable technique for image and video coding.

  1. Universal Image/Video Coding technique
  2. Compression gain even at low bitrates
  3. MPEG7-like features embedded
  4. Performance competitive to H.264
Possible Applications

The procedure offers a universal, bit-effective video compression approach, applicable for different coding application.


The primary goal of the method described here is to allow reconstruction of images in high quality by using a universal image coder with easy bit-level access to MPEG-7-like low- and mid-level image features at the decoder. Natural images are mostly piecewise smooth. Therefore, the idea is to search for unsteady regions in the image, and to approximate the stationary regions separately, but smoothly combining both of them with great care.

Technical Description

For this, a sparse Mixture-of-Experts (SMoE) regression approach for encoding videos in the pixel domain is used, deferring drastically from the established DPCM/Transform coding philosophy. According to the invention, the MoE takes on the form of a Gaussian Mixture Regression (GMR) for multivariate nonlinear regression. The underlying stochastic process of the pixel amplitudes are modelled as a 3-dimensional and multi modal mixture of Gaussians with K modes. Therefore, each component in the MoE steers in the direction of the highest correlation. Experiments shows that – compared to JPEG – for a large class of images a considerable compression gain is achievable at low bitrates, while providing attractive low-level descriptors for the image. This way, the SMoE shows a strong resemblance to MoE neuronal networks, while providing a performance competitive with H.264.

Contact Us

Ina Krüger

Technology Transfer Manager

+49 (0)30 314-75916

Technology Readiness Level

Technology validated in lab

Property Rights

pending: PCT

Patent Holder

Technische Universität Berlin

Possible Cooperation
  • R&D Cooperation
  • Licensing
  • Patent Purchase